The b-chromatic number of mycielskian of cycles

Lisna. P. C, M.S.Sunitha

Abstract

A b-coloring of a graph G is a proper coloring of the vertices of \mathbf{G} such that there exist a vertex in each color class joined to at least one vertex in each other color classes. The b-chromatic number of a graph \mathbf{G}, denoted by $j(G)$, is the maximal integer k such that G may have a b-coloring with k colors. The Mycielskian or Mycielski graph $m(H)$ of a graph H with vertex set $\mathrm{fv}_{\mathbf{1}}$; $\mathrm{v}_{\mathbf{2}} ;:$::; $\mathrm{v}_{\mathrm{n}} g$ is a graph \mathbf{G} obtained from H by adding $n+1$ new vertices $f u ; u_{1} ; u_{2} ;:$:; $u_{n} g$, joining u to each vertex $u_{i}(1 i n)$ and joining u_{i} to each neighbour of v_{i} in H. In this paper we obtained the b-chromatic number of the mycielskian of cycles.

Index Terms-b-chromatic number, b-coloring, b-dominating set, mycielskian, cycle.

1 INTRODUCTION

The concept of b-chromatic number was introduced in 1999 by Irving and Manlove[6], who proved that determining $\varphi(G)$ is NP-hard in general and polynomial time solvable for trees. The b-chromatic number $\varphi(G)$ of a graph G is the largest positive integer k such that G admits a proper k coloring in which every color class has a representative vertex which is adjacent to at least one vertex in each of the other color classes. Such a coloring is called a b-coloring and this representative vertex is known as the b dominating vertex and the set of b-dominating vertex is known as the b-dominating set [3]. In [1] the b-coloring of cographs and P_{4} sparse graphs is discussed. In [3] El Sahili and Kouider M obtained a general formula for the b chromatic number of regular graphs. In [7] the b-coloring of Kneser graphs is discussed. In [10] Vernold Vivin J and Venkatachalam M obtained the b-chromatic number of corona of two graphs with same number of vertices. In this paper we obtained the b-chromatic number of mycielskian of cycles.

Lisna. P.C is research scholar in the Department of Mathematics, NIT Calicut, India-673601
E-mail: lisnapc@gmail.com
M.S.Sunitha is faculty in the Department of Mathematics, NIT Calicut, India-673601 E-mail: sunitha@nitc.ac.in

The b-chromatic number of a graph G is defined as follows.
Definition 2.1. The b-chromatic number $\varphi(G)$ of a graph G is the largest positive integer k such that G admits a proper
k-coloring in which every color class contains a vertex which is adjacent to at least one vertex in each of the other color classes.

Example 2.2.

Figure 1: b-coloring of a graph with three colors

3 MYCIELSKIAN OF A GRAPH [5]

The mycielskian or mycielski graph of a graph G, denoted by $\mu(G)$ is defined as follows.

Definition 3.1. The Mycielskian or Mycielski graph $\mu(H)$ of
a graph H with vertex set $\left\{v_{1}, v_{2} \ldots v_{n}\right\}$ is a graph G obtained from H by adding $\mathrm{n}+1$ new vertices $\left\{u_{1}, u_{2} \ldots u_{n}\right\}$ joining u to each vertex u_{i} for $1 \leq i \leq n$ and joining u_{i} to each neighbour of v_{i} in H .

Example 3.2.

4 B-CHROMATIC NUMBER OF MYCIEL-

SKIAN OF CYCLE

The b-chromatic number of the mycielskian of cycle is given as follows

Theorem 4.1. The b-chromatic number of the my-cielskian of a cycle is

$$
\varphi\left(\mu\left(C_{n}\right)\right)=\left\{\begin{array}{l}
\varphi\left(C_{n}\right)+1, \quad n \leq 6 \\
\varphi\left(C_{n}\right)+2, \quad n \geq 7
\end{array}\right.
$$

Proof:
Let the vertex set of $\mu\left(C_{n}\right)$ be $\left\{v_{1}, v_{2} \ldots v_{n}\right\}$ and that of $\mu\left(C_{n}\right)$ be $\left\{v_{1}, v_{2} \ldots . v_{n}\right\} \cup\left\{u_{1}, u_{2} \ldots u_{n}\right\} \cup\{u\}$.Here $\left\{u_{1}, u_{2} \ldots . u_{n}\right\}$ is set of n independent vertices in which each u_{i} is connected to every neighbours of v_{i} and the vertex u is connected to every $\mathrm{u}_{\mathrm{i}} ; 1 \leq i \leq n$.

Case 1: $n \leq 6$
Subcase 1: $\mathrm{n}=3$
Here $\varphi\left(C_{n}\right)=3$, so we Have to prove That
$\varphi\left(\mu\left(C_{n}\right)\right)=$ 4. On the Contrary Assume That $\varphi\left(\mu\left(C_{n}\right)\right)=5$, then there will be at least 5 vertices with degree at least 4 . But here we have only 3 vertices with degree at least 4 . So a b-coloring with 5 colors is not possible. A b-coloring with 4 colors can be obtained by assigning color i to v_{i} and $\mathrm{u}_{\mathrm{i}} ; 1 \leq i \leq n$. and color 4 to u .
Subcase 2: $\mathrm{n}=4$
Here we have exactly 5 vertices, v_{1}, $\mathrm{v}_{2}, \mathrm{v} 3, \mathrm{v} 4, \mathrm{u}$ with degree at least 4 . Hence we can check the existence of a bcoloring with 5 colors. Assume that such a coloring is existing, then the b-dominating vertices will be $\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{v}_{3}$, v_{4} and u. Now consider the vertices v_{1} and v_{3}. The neighbours of v_{1} are $\mathrm{v}_{2}, \mathrm{v}_{\mathrm{n}}, \mathrm{u}_{2}, \mathrm{u}_{\mathrm{n}}$, which are same as the neighbours of v_{3}. That is, here the two vertices v_{1} and v_{3} are having same neighbours. Hence a b-coloring with 5
colors is not possible. Because if we choose v_{1} and v_{3} as the b-dominating vertices then V_{3} should be adjacent to a vertex which is having the color of v_{1} and v_{1} should be adjacent to a vertex which is having the color of v3, but since these vertices have same neighbours we cannot assign the color of v_{1} and color of v_{3} to any of these neighbours. Next check the existence of a b-coloring with 4 colors. Here all the vertices are having degree at least 3 . Now consider the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}\right\}$. From this set we can choose only two b -dominating vertices because here v_{1} and v_{3} are having same neighbours and V_{2} and V_{4} are having same neighbours. Hence from this set we can select $\mathrm{v}_{1}, \mathrm{v}_{2}$ or v_{2}, v_{3} or $\mathrm{v}_{3}, \mathrm{~V}_{4}$ or $\mathrm{V}_{4}, \mathrm{~V}_{1}$ as the b -dominating vertices. That is we can select any two adjacent vi^{\prime} 's as the b-dominating vertices. Next consider the set $\left\{\mathbf{u}_{1}, u_{2}, u_{3}, u_{4}\right\}$. Here each vertices are having degree exactly 3 . Here any two u_{i} 's will have either same neighbours or it will have one common neighbour and two dis-tinct neighbours. The vertices with same neighbours cannot be choose as b-dominating vertices. So we can choose vertices with one common neighbour and two distinct neighbours as the b-dominating vertices. Thus we can select u_{1}, u_{2} or u_{2}, u_{3} or u_{3}, u_{4} or u_{4}, u_{1} as the b-dominating vertices. That is we can select u_{j} and $u_{j+1}, 1 \leq i \leq 4, j+1=1$ if $j+1>4$ as the b-dominating vertices. Now suppose that $v_{i}, v_{i+1}, u_{j}, u_{j+1}$ are the b dominating vertices. Here u_{j} will be adjacent to either v_{i} or v_{i+1} but not to both. Similarly u_{j+1} will be adjacent to either v_{i} or v_{i+1} but not to both. Without loss of generality assume that u_{j} is adjacent to v_{i} and u_{j+1} is adjacent to $\mathrm{v}_{\mathrm{i}+1}$. Assign colors $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}$ to $v_{i}, v_{i+1}, u_{j}, u_{j+1}$ respectively. Now u_{j} is having color c_{3} and is adjacent to v_{i} with color c_{1}. To make the vertex $u_{j} b$-dominating, it should be adjacent to vertices with color c_{2} and c_{4}. Now the neighbours of u_{j} are v_{i}, v_{i+2} and u. Here $i+2=1$ if $i+2>4$. Since v_{i+2} is adjacent to v_{i+1} we cannot assign color c_{2} to $\mathrm{v}_{\mathrm{i}+2}$. So assign color c_{4} to $\mathrm{v}_{\mathrm{i}+2}$ and c_{2} to u. Now consider u_{j+1}. The neighbours of u_{j+1} are v_{i+1}, v_{i+3} and u. Here $i+3=1$ if $i+3>4$. Here the vertex v_{i+1} and u have same color and the vertex u_{j+1} will be b dominating if it is adjacent to vertices with color C_{1} and c_{4}. But now the vertex u_{j+1} have only one uncolored neighbour. Hence u_{j+1} will not become a b-dominating vertex. Hence we cannot choose two vertices from the set $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$ as b -dominating vertices. So select one vertex u_{j} with color c_{3} as a b-dominating vertex. Now this vertex will be adjacent to either v_{i} or v_{i+1}. Suppose that it is adjacent to v_{i}. As mentioned above, to make the vertex u_{j} b-dominating we have to assign color c_{2} to u. But this will results in a bcoloring with 3 colors. Because here we cannot find a bdominating vertex to assign color c_{4}. This means that we cannot choose any b-dominating vertex from the set $\left\{u_{1}, u_{2}\right.$, $\left.\mathrm{u}_{3}, \mathrm{u}_{4}\right\}$.

2 Here also $\varphi\left(C_{n}\right)=3$. So we have to prove that $\varphi\left(\mu\left(C_{n}\right)\right)=4$ On the contrary assume that $\varphi\left(\mu\left(C_{n}\right)\right)=5$.
Now select u as a b-dominating vertex. But here also we cannot construct a b-coloring with 4 colors. Because here we have only 3 b -dominating vertices, $\mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}+1}$ and u . Using these three b -dominating vertices we cannot construct a bcoloring with 4 colors. Hence a b-coloring with 4 colors is not possible here. A b-coloring with 3 colors can be obtained by assigning color 1 to u, color 2 to v_{1}, v_{3}, u_{1} and u_{3} and color 3 to $\mathrm{v}_{2}, \mathrm{v}_{4}, \mathrm{u}_{2}$ and u_{4}
Subcase 3: $\mathrm{n}=5$
$\varphi\left(C_{n}\right)=3$. So we have to prove that
$\varphi\left(\mu\left(C_{n}\right)\right)=4$ On the contrary assume that $\varphi\left(\mu\left(C_{n}\right)\right)=5$. Then there should be at least 5 vertices with degree at least 4 . Here the degree of each $u_{i}: 1 \leq i \leq 5$ is 3 . But the degree of each $\mathrm{v}_{\mathrm{i}} ; 1 \leq i \leq 5$ is 4 and the degree of u is 5 . So here we can choose either $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$ or any 4 vertices from the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$ and the vertex u as the b dominating vertices. Consider the first case. That is select $\left\{\mathrm{V}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}\right\}$ as the b-dominating set. The degree of each of these vertices is 4 . So these 5 vertices will become bdominating only if all the 4 neighbours each v_{i} receives distinct colors. Now assign color c_{i} to $\mathrm{v}_{\mathrm{i}} ; 1 \leq i \leq 5$. Now consider the vertex v_{1}. This vertex is having color c_{1} and is adjacent to $\mathrm{v}_{2}, \mathrm{v}_{5}, \mathrm{u}_{2}$ and u_{5}. Here v_{2} and v_{5} are having colors C_{2} and c_{5} respectively. To make the vertex v_{1} bdominating we have to assign colors c_{3} and c_{4} to u_{2} and u_{5}. Here u_{2} is adjacent to v3 having color c_{3}. So we cannot assign color c_{3} to u_{2}. So assign color c_{3} to u_{5} and c_{4} to u_{2}. Thus v_{1} becomes a b-dominating vertex. Next consider the neighbours of v_{4}. The neighbours of v_{4} are v_{3}, v_{5}, u_{3} and u_{5}. Here v_{3} and u_{5} are having color c_{3}. That is two neighbours of v_{4} receives same color. Hence we cannot make the vertex v_{4} b-dominating. Hence the vertices $\left\{\mathrm{v}_{1}\right.$, $\left.\mathrm{V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}\right\}$ will not become a set of b-dominating vertices. Now consider the second case. That is choose any four vertices from the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$ and u as the b dominating vertices. Assign color c_{1} to u . Since each $\mathrm{u}_{\mathrm{i}} ; 1 \leq i \leq 5$ is adjacent to u , we cannot assign color c_{1} to any of the u_{i} 's. But the four vertices from the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}\right.$, $\left.\mathrm{V}_{4}, \mathrm{v}_{5}\right\}$ become b-dominating only if they adjacent to a vertex with color ci.

But from the set five vertices, $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}\right\}$ we have selected only four vertices as the b-dominating vertices. So one vertex will remains here and we can assign color c 1 to this vertex. But still all the four b-dominating vertices will not be adjacent to this vertex. Only two of them will be adjacent to this vertex. Hence in this case also we cannot make a b-coloring with 5 colors. A b-coloring with 4 colors can be obtained by assigning color 1 to v_{1} and v_{4}, color 2 to v_{2} and u , color 3 to v_{3} and v_{5} and color 4 to $\mathrm{u}_{1}, \mathrm{u}_{2}, \mathrm{u}_{3}, \mathrm{u}_{4}$ and u_{5}.
Subcase 4: $\mathrm{n}=6$

Then there will be at least 5 vertices with degree at least 4 . Here the vertices with degree at least 4 are $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}$, v_{6} and u . Note that the degree of $\mathrm{v}_{1}, \mathrm{~V}_{2}, \mathrm{~V}_{3}, \mathrm{~V}_{4}, \mathrm{~V}_{5}, \mathrm{~V}_{6}$ is exactly 4 and that of u is 6 . Now we can select any of the 5 vertices from the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{v}_{4}, \mathrm{v}_{5}, \mathrm{v}_{6}, \mathrm{u}\right\}$ as the bdominating vertices. Suppose that the vertex u is included in the b-dominating set. If we select u as a b-dominating vertex, then the remaining four b-dominating vertices will be from the set $\left\{v_{1}, v_{2}, \ldots . v_{6}\right\}$. Let the color of u be c_{1}. Since all the u_{i} 's are adjacent to u, we cannot assign color c_{1} to these vertices. The four vertices from the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2} \ldots . \mathrm{v}_{6}\right\}$ will be b-dominating if it is adjacent to a vertex with color c_{1}. Note that from this set of six vertices we have selected only four vertices as b-dominating and for the remaining two vertices we can assign color c 1 . Hence choose the four b-dominating and the two non b-dominating vertices with color c_{1} in such a way that all the b-dominating vertices are adjacent to one of the non b-dominating vertices with color c_{1}. For example if we choose the b-dominating vertices as $\mathrm{V}_{1}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$ and V_{6} and the two non b -dominating vertices with color v_{1} as v_{2} and v_{5}, then here all the b -dominating vertices will be adjacent to either v_{2} or v_{5}. That is all the b dominating vertices are adjacent to a vertex with color C_{1}. Let the color of the b-dominating vertices $\mathrm{v}_{1}, \mathrm{~V}_{3}, \mathrm{~V}_{4}$ and v_{5} $b^{\text {be }} \mathrm{c}_{2}, \mathrm{c}_{3}, \mathrm{c}_{4}$ and c_{5} respectively. Now consider the vertex V_{1}. v_{1} is having color c_{2} and is adjacent to $\mathrm{v}_{2}, \mathrm{v}_{6}, \mathrm{u}_{2}$ and u_{6}. Here v_{2} and v_{6} are having colors c_{1} and c_{5} respectively. To make the vertex v_{1} b-dominating, it should be adjacent to vertices with colors c3 and c4. Here v3 is having color c3 and is adjacent to u_{2}. So we cannot assign color c_{3} to u_{2}. So assign color c_{4} to u_{2} and c_{3} to u_{6}.

Now consider the vertex V_{3}. V_{3} is having color C_{3} and is adjacent to v_{2}, v_{4}, u_{2} and u_{4}. Here the color of u_{2} and v_{4} is c_{4} and that of v_{2} is c_{1}. To make the vertex $v_{3} b$ dominating, it should be adjacent to vertices with colors c_{2} and c5. But now this vertex has only one uncolored neighbour. So we cannot make this vertex b-dominating. Thus a b-coloring with 5 colors is not possible here. Also we cannot make any b-coloring with 5 colors even if we choose the four b-dominating and the two non bdominating vertices in any other order. Now suppose that the vertex u not included in the b-dominating set. Thus the five b-dominating vertices will be from the set $\left\{\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{6}\right\}$. As mentioned above here also we cannot make some vertices b -dominating. Hence a b-coloring with 5 colors is not possible here and a b-coloring with 4 colors can be obtained by assigning color 1 to $\mathrm{v}_{1}, \mathrm{u}_{3}, \mathrm{u}_{4}$ and u_{5}, color 2 to $\mathrm{v}_{2}, \mathrm{v}_{5}$ and u , color 3 to $\mathrm{v}_{3}, \mathrm{v}_{6}$ and u_{6} and color 4 to $\mathrm{v}_{4}, \mathrm{u}_{1}$ and u_{2}.

Case 2: $n \geq 7$
$\varphi\left(C_{n}\right)=3$. So we have to prove that $\varphi\left(\mu\left(C_{n}\right)\right)=5$ On the contrary assume that $\varphi\left(\mu\left(C_{n}\right)\right)=6$. Then there will be at least 6 vertices with degree at least 5 . But here we have only one vertex with degree at least 5. So a b-coloring with 6 colors is not possible here. A b-coloring with 5 colors can be obtained by assigning color 1 to $\mathrm{v}_{2}, \mathrm{u}_{4}$, u_{5} and u_{n-1}, color 2 to $\mathrm{V}_{3}, \mathrm{~V}_{6}$ and v_{n-1}, color 3 to $\mathrm{V}_{4}, \mathrm{~V}_{1}$ and u , color 4 to $\mathrm{v}_{5}, \mathrm{u}_{1}$ and u_{2} and color 5 to $\mathrm{v}_{\mathrm{n}}, \mathrm{u}_{\mathrm{n}}, \mathrm{u}_{3}$ and u_{4}. For the remaining $u_{i}{ }^{\prime} \mathrm{s}$ and v_{i} 's assign any of the color from the list $\{1,2,3,4.5\} \backslash\{3\}$ in a proper way. Now this is a bcoloring with 5 colors and here the b-dominating vertices are $\mathrm{v}_{2}, \mathrm{v}_{3}, \mathrm{~V}_{4}, \mathrm{v}_{5}$ and v_{n}.

5. CONCLUSION

In this paper we obtained the b-chromatic number of the mycielskian of cycles.

REFERENCES

[1] Bonomo, F., Duran, G., Maffray, F., Marenco, J., Valencia-Pabon, M.: On the b-coloring of cographs and P_{4}-spars graphs.
Graphs Combin. 25, 153-157(2009)
[2] Djamel, G., Veronique, E., Frank, L., Hubert, E.: Graph b-coloring for automatic recognition of documents.IEEE/ICDAR,72(2009)
[3] El Sahili, A., Kouider, M.: About b-coloring of regular graphs. Res. Rep. 1432, LRI, Univ. Orsay, France(2006)
[4] Elghazel, H., Yoshida, T., Deslandres, V., Hacid, M.S., Dus-sauchoy, A.: A new greedy algorithm for improving b-coloirng clustering. Proceedings of GbR2007,Springer Verlag, 228-239(2007)

